帮助孩子学习数学的好办法,值得收藏
2018-09-28 20:40
来源:
作者:
孩子数学总是学不好?
感觉孩子学数学的习惯不太好,但是又说不出哪不好?
有什么好的学数学的思维方法呢?
小学孩子数学到底该怎么学?
各位家长别急,小编这就帮大家解决上面的问题。
有个学习数学的习惯
认真完成家庭作业的习惯
根据德国心理学家艾宾浩斯“遗忘曲线”的原理,人有在学习新知识后及时练习便不容易忘掉,如果不及时练习,就很容易遗忘的记忆规律。
因此,巩固当天所学,认真完成家庭作业很有必要。对于这点,要求学生作到:做作业前,先看课本回顾一下当天所学的知识,然后再做作业,还要做到“三到一检查一签字”。“三到”:眼到、心到、手到,眼睛看清题目,心里想着计算,手要把答案写得正确、美观;
“一检查一签字”:做完作业后,仔细检查有没有出错,有错要及时订正,最后再让家长签字。老师及时批改后的错题,记录在《错题集》上,并在作业本上订正。
快速、正确口算的习惯
数学上低年级的口算是今后计算的基础,要养成快速、正确口算的习惯,还要在掌握一定的口算方法的基础上多练习。
要引导学生采用有效的具体的记忆方法有针对性地多记、多练、熟记。课上课下也可以用扑克牌游戏的形式练习连加、连减或乘法,经常练习,熟能生巧,口算速度自然就提高了。
也可以借助一些电脑软件或者app,程序自动出题,自动批改,孩子们还可以PK口算成绩,充分调动了孩子们的学习积极性。
养成良好的学习方法
孩子每个星期回家做作业时要采取这样的方法:
先复习这一星期所学的知识,理通脉络;
然后再把这周的作业做出来,并进行检查;
最后把下周要学的知识进行预习。
如果采用这样的方法并坚持下去,我相信孩子的学习一定会有很大进步的。
养成不懂就问的习惯
有些题目孩子不懂,家长要耐心地解释题目的意思,鼓励孩子不懂就问。但是家长最好不要直接把答案告诉他,我想只要你把题目解释清楚,孩子是能够自己解答的。
135编辑器
养成学习数学的四种思维
函数与方程的思想
函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。
而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
数形结合的思想
数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;
而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。
分类讨论的思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:
类型 1 :由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型 2 :由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型 3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型 4 :由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型 5 :由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:
①确定讨论的对象及其范围;
②确定分类讨论的分类标准;
③按所分类别进行讨论;
④归纳小结、综合得出结论。注意动态问题一定要先画动态图。
转化与化归的思想
转化与化归市中学数学最基本的数学思想之一,是一切数学思想方法的核心.数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。
转化与化归的指导思想
( 1 )把什么问题进行转化,即化归对象 .
( 2 )化归到何处去,即化归目标 .
( 3 )如何进行化归,即化归方法 .
常见的转化方法有:
( 1 )直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.
( 2 )换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题 .
( 3 )数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径 .
( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.
( 5 )特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题 .
( 6 )构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.
( 7 )坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
本文来源于网络,如有侵权请联系删除。
新东方石家庄学校 (微信号:helloxdf)
及时获取本地权威教育资讯,随时随地的贴身学习顾问,英语学习的好帮手、课程规划的好助手!
相关推荐
版权及免责声明
①凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。
② 本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。
③ 如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。