新东方网>石家庄新东方学校>学习园地>初中考试>正文

初中数学二次函数知识点总结,新学期别错过!

2018-09-07 11:21

来源:

作者:

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c

abc为常数,a0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称yx的二次函数。

二次函数表达式的右边通常为二次三项式。

二次函数的三种表达式

一般式:y=ax²+bx+cabc为常数,a0

顶点式:y=a(x-h)²+k[抛物线的顶点Phk]

交点式:y=a(x-x)(x-x)[仅限于与x轴有交点Ax₁,0)和Bx₂,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b²)/4a x,x=(-b±√b²-4ac)/2a

二次函数的图像

在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0

2.抛物线有一个顶点P,坐标为:P(-b/2a(4ac-b²)/4a)-b/2a=0时,Py轴上;当Δ=b²-4ac=0时,Px轴上。

3.二次项系数a决定抛物线的开口方向和大小。

a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

ab同号时(即ab0),对称轴在y轴左;

ab异号时(即ab0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0c

6.抛物线与x轴交点个数

Δ=b²-4ac0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个交点。

Δ=b²-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b²-4ac的值的相反数,乘上虚数i,整个式子除以2a

二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax²+bx+c

y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)²+ky=ax²+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:


h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到,

h<0时,则向左平行移动|h|个单位得到.

h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;

h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;

h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;

h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;

因此,研究抛物线y=ax²+bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h)²+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax²+bx+c(a0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a[4ac-b²]/4a)

3.抛物线y=ax²+bx+c(a0),若a>0,当x-b/2a时,yx的增大而减小;当x-b/2a时,yx的增大而增大.若a<0,当x-b/2a时,yx的增大而增大;当x-b/2a时,yx的增大而减小.

4.抛物线y=ax²+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0c)

(2)当△=b²-4ac>0,图象与x轴交于两点A(x₁,0)B(x₂,0),其中的x1,x2是一元二次方程ax²+bx+c=0

(a0)的两根.这两点间的距离AB=|x-x|

=0.图象与x轴只有一个交点;

<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0

5.抛物线y=ax²+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小()=(4ac-b²)/4a

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知xy的三对对应值时,可设解析式为一般形式:

y=ax²+bx+c(a0)

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a0)

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a0)

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

以上内容整理自网络,如有侵权请联系删除

新东方石家庄学校 (微信号:helloxdf

及时获取本地权威教育资讯,随时随地的贴身学习顾问,英语学习的好帮手、课程规划的好助手!

免费申请学习规划

已为25937位学员提供学习规划

*验证码

*短信验证码

相关推荐

  • 热门新闻
  • 热门活动
  • 留学资讯
  • 中学资讯

版权及免责声明

凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。

本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。

如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。